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We examine the dynamics of a single colloidal particle driven through a colloidal lattice which can distort
in response to the driven particle. We find a remarkably rich variety of dynamical locking phenomena as we
vary the angle of the applied drive with respect to the orientation of the colloidal lattice. When the driven
colloid locks to certain lattice symmetry directions, its motion is not necessarily aligned with the drive.
Applying a transverse force to the driven particle can result in either increased or decreased drag in the driving
direction, depending on the angle of the drive. The dynamical locking produces anomalies in both the longi-
tudinal and the transverse velocity vs driving force curves, including steps and regimes of negative differential
resistance. As the interaction of the driven particle with the surrounding lattice increases, significant distortion
or dislocations in the surrounding media occur, and as a result the directional locking is enhanced. We compare
these results to those obtained for driving particles overfixedsubstrates, and show that a far richer variety of
behaviors occurs when the underlying lattice is allowed to distort. We discuss how this system can be used for
particle species segregation when the onset of different locking angles occurs at different drives for varied
particle charges. We also show that the most pronounced locking phases should be observable at temperatures
up to the melting transition of the colloidal lattice.
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I. INTRODUCTION

Assemblies of interacting colloidal particles exhibit a
wide range of ordered, glassy, and liquid states[1,2], and
have proven an ideal system for studying these equilibrium
states with various imaging techniques. Colloids can also be
studied in nonequilibrium conditions such as under shear
or when driven with different types of fields[2]. Recently
Korda et al. [3] investigated the dynamics of moving col-
loids driven over a square two-dimensional(2D) optical
tweezer array. Here, the optical tweezers act as attractive
sites [4]. In this system, a series of locked transport states
occur as the angle at which the colloids are driven with re-
spect to the optical lattice is varied. In the locked states, the
colloids move along a high-symmetry direction of the lattice
even when this is not the same as the direction of drive. The
locking produces steps in the colloidal velocity vs driving
angle, and may have applications as a novel method for con-
tinuous separation of particles of different species, such as
macromolecules and biological cells[5–7]. Separation can
be achieved when a particular species locks to a symmetry
direction while the remaining species continue to move in
the direction of the applied drive. Other techniques to sepa-
rate particle species along this line include the transport of
particles through periodic obstacle arrays[8,9].

Particle transport through fixed periodic arrays under
varying drive direction has also been investigated in simula-
tions of vortices moving in nanostructured superconductors
[10,15] and Josephson junctions[11–13]. Recent experi-
ments on vortices driven at different angles through periodic
pinning arrays find guiding effects similar to the features
seen in simulations[14]. Similar effects have also been stud-
ied in electron transport through periodic antidot arrays[16]
as well as atomic friction over ordered surfaces[17]. In gen-
eral, for all of these systems, the particle motion locks to
certain symmetry angles of the lattice. References[10,16]

showed that the velocity vs angle curve has a devil’s stair-
case structure, with a step in the particle velocity at each
locking angle. Certain highly symmetrical angles of drive
produce stronger locking than others.

In the experiments of Ref.[3] and the theoretical studies
of Refs.[10–13,16,17], the periodic lattice through which the
particles move is completelyrigid. Another approach which
has not been previously considered is for the driven particle
to move through a stationary, butdistortable, lattice of par-
ticles. In this case, the driven particle still interacts with a
periodic array of obstacles; however, the driven particle can
in turn affect the surrounding media and distort or create
dislocations in the surrounding lattice. A physical example of
such a system would be driving a single or small number of
colloidal particles through a triangular colloidal lattice. This
can be achieved by placing a colloidal particle that responds
to an external drive into a colloidal lattice for densities and
temperatures where the nondriven colloids form a triangular
lattice. It should be straightforward to drive individual col-
loids with an optical tweezer[7]. It is also possible to use
magnetic impurity particles driven with a magnetic field, as
in recent experiments by Weeks and co-workers[18]. A
variation on this type of system would be to have one colloid
or impurity particle fixed at a spot and to drive the colloidal
lattice past it. Experiments along this line have been per-
formed previously for large obstacles[19].

A system that has many similarities to colloids is vortices
in superconductors, where the mutual repulsion between vor-
tices leads to the formation of a triangular lattice. For a clean
superconductor where the intrinsic pinning is not strong
enough to distort the vortex lattice, it may be possible to
drive a single vortex with a magnetic force microscope or
scanning tunneling microscope tip. It has also been demon-
strated experimentally using a lithographically created artifi-
cial pin [20] that a single pinning site can capture one or
more vortices while the other vortices are driven past. Other
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similar systems include driving an obstacle through a trian-
gular bubble raft lattice, or manipulating a single droplet of a
two-ferrofluid system in a triangular droplet state. Another
system closely related to colloids is 2D dusty plasmas where
charged dust particles form a triangular lattice[21] and indi-
vidual particles can be driven with lasers.

In a system where the periodic lattice through which a
particle is driven can itself be affected by the driven particle,
a number of intriguing scenarios are possible which cannot
arise when the substrate is completely rigid. Examples in-
clude a transition from an ordered flow, where the driven
particle only distorts the lattice elastically and does not cre-
ate dislocations, to a disordered flow, where the particle tears
the lattice and dislocations are generated. This could occur
when the particle moves at an angle that is not commensu-
rate with the lattice, or for a large enough driven particle.
Other effects that could occur include the possibility that, for
certain driving directions, the driven particle may drag por-
tions of the nondriven lattice with it. Conversely, for other
driving directions, the particle may be able to slip freely
between the particles comprising the lattice. Since the lattice
can locally distort to more easily accommodate the motion of
the driven particle in the locked regimes, the locking effects
may be different in nature and more pronounced than those
observed in previous work on rigid substrates. One practical
application of this system, as suggested in Refs.[3,5], is the
continuous separation of different species of particles as they
move through periodic arrays of obstacles. We demonstrate
that the separation of particles of different charges is en-
hanced by the ability of the surrounding lattice to distort. If,
under certain conditions, the distortable lattice can act as a
filter for different charged particles, then the additional step
of using optical tweezer arrays, as in Ref.[3], would not be
needed.

II. SIMULATION

We simulate a 2D monodisperse colloidal assembly using
Langevin dynamics, with techniques that have been de-
scribed previously[22,23]. The overdamped equation of mo-
tion for a single colloidi in a system with periodic bound-
aries in thex andy directions is

h
dr i

dt
= f i j + f d

i + fT. s1d

Hereh=1 is the damping term arising from the fact that the
particle is moving through a viscous media. The interaction
force from the other colloids isf i j =−o jÞi

N =iVsr ijd, where the
repulsive colloid-colloid interaction is Yukawa or screened
Coulomb,

Vsr ijd =
qiqj

ur i − r ju
exps− kur i − r jud. s2d

Here qis jd is the charge of the particle, 1/k is the screening
length, r i is the position of particlei, and r j is the position
of particle j . We initialize the system in a triangular lattice
with N colloids and a lattice constanta, and then insert one

additional driven colloid. The screening length is fixed at
1/k=3a.

The thermal forcefT is a randomly fluctuating force mod-
eled as random kicks, with the propertieskfTstdl=0 and
kfTstdfTst8dl=2hkBTdst− t8d. For most of the results presented
here, the colloid density is held fixed and the system size is
set toL=34a. With these parameters there is a well-defined
melting temperatureTm for the unperturbed lattice, which we
determine by measuring the fraction of colloids which are
sixfold coordinated,P6. In the solid,P6=1, but at the melting
transition Tm, defects proliferate andP6 falls below 1 and
becomes noisy[24]. We measure temperature in units ofTm.
For the first part of the paper we consider the case ofT=0 so
that the effects of the dynamics can be clearly distinguished.
We later show that for a large range ofT/Tm essentially the
same results appear, and that the locking effects are lost for
T/Tm.1. Thus the results from our work should be appli-
cable to experimental samples at finite temperatures.

We vary the charge on the driven particleqd and the di-
rection of drive. All particles except the driven one have
chargeq=1 and applied dc drivef d

i =0. The force on the
driven particle has two components:

fd = f x
dx̂ + f y

dŷ. s3d

We hold f x
d fixed at a constant value and increasef y

d. We
then monitor the velocitiesVx andVy of the driven particle.

We do not take into account possible hydrodynamic ef-
fects or possible long-range attractions between colloids. We
have conducted simulations for different system sizes, lattice
constantsa, and screening lengths, and find that the qualita-
tive results presented here are robust.

III. SMALL DRIVEN PARTICLE

We first consider the case where the driven particle inter-
acts only weakly with the surrounding particles so that, al-
though small distortions of the lattice can occur, no disloca-
tions are formed in the surrounding media. We define this
weak interaction regime asqd/q,0.5. In the case of a trian-
gular lattice aligned in thex direction, as in Fig. 1(a), locking
should occur for angles of drive where the driven colloid can
move freely between the colloids in the lattice. This occurs
for ratios of the applied drive of

f y
d

f x
d =

Î3m

2n + 1
, s4d

wherem andn are integers. The corresponding locking angle
is u=arctansf y

d/ f x
dd. Equation s4d predicts locking at 60°

corresponding tom=1, n=0; 30° corresponding tom=1,
n=1; 19.1°corresponding tom=1, n=2; and 0° form=0.
Other locking angles occur for higher-order values ofm
and n. In Fig. 1 we illustrate the driven particle, the sur-
rounding lattice, and the particle trajectories for a system
with fixed parameters ofqd/q=0.35 and f x

d=1.0 for in-
creasing f y

d/ f x
d=0,0.57, and0.78. The trajectories in all

these cases show that the driven particle moves through
the lattice without significantly distorting it, due to the
weak charge of the driven particle. In Fig. 1sad we show
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the commensurate case off y
d/ f x

y=0 where the particle
channels between the surrounding colloids. Figure 1sbd
presents another commensurate case forf y

d/ f x
d=0.57 where

the particle moves in a periodic orbit along a symmetry
line of the lattice. This orbit corresponds tom=1, n=1
from Eq. s4d, so the flow is along 30°. In Fig. 1scd we
show an incommensurate case off y

d/ f x
y=0.78, which is not

a simple ratio in Eq.s4d. Here the particle does not move
in a completely periodic orbit but shows some nonperiodic
deviations; however, the particles in the surrounding lat-
tice still show little deviation from their positions. We
observe similar types of motion at the other incommensu-
rate angles as well.

In order to better demonstrate the difference between the
commensurate and incommensurate particle orbits in Fig. 1,
we analyze the power spectra of the velocityVy of the driven
particle for the two cases. In Fig. 2 we show the power
spectraSsnd obtained from a time series ofVy of the driven
particle at fixedf y

d/ f x
d. Figure 2(a) illustratesSsnd for the

commensurate casef y
d/ f x

d=0.57 shown in Fig. 1(b). Here the
spectrum has a prominent peak atn=0.0127 inverse molecu-
lar dynamics steps with higher harmonics, indicating that the
particle motion is strictly periodic with a single frequency. In
a commensurate orbit, a single frequency is expected to ap-
pear since the particle is moving along a symmetry direction
of the lattice and is slowed by the interactions from the sur-
rounding lattice at a constant spacing and a constant rate. In
Fig. 2(b), the spectrum for the incommensurate casef y

d/ f x
d

=0.78 shown in Fig. 1(c) has many peaks, indicating that the
particle is undergoing motion with many different periods
giving a broad spectrum. In general, for these incommensu-
rate phases, the particle likely jumps between several differ-
ent closely spaced locked phases with highm and n values
which, together, produce an angle of motion which is close

to the angle of the drive. We find similar behaviors in the
power spectra at other commensurate and incommensurate
angles.

In Fig. 3(a) we simultaneously plotVx and Vy vs f y
d/ f x

d,
with fixed f x

d=1.0, showing that the locked phases strongly
affect the transport proprieties. We highlight a few ratios of
sm,nd from Eq. (4) to indicate the most prominent locking
phases:s0,0d, which starts atf y

d/ f x
d=0 in the bottom left

corner of Fig. 3(a); s1,1d for flow at 30°; and the very promi-
nent s1,0d locking centered atf y

d/ f x
d=1.7. There are addi-

tional smaller steps that are difficult to see for this value of
qd. Another interesting feature is thatVx has an average value
of 0.9 for f y

d/ f x
d,2.0. We note that, for a single driven col-

loid moving in the absence of any other particles, we would
haveVx=1.0, which is higher than the value obtained in the
presence of the other particles. This indicates that the driven
particle experiences an additional damping due to the inter-
actions with the other particles. This damping originates
when the surrounding colloids shift slightly as the driven
particle moves past. Since the motion of these surrounding
colloids is also overdamped, the only source of energy is the
driven particle. In the case of a rigid substrate[10], this
additional damping effect is absent since the periodic sub-
strate cannot distort and absorb energy. Another immediately
obvious difference between this system and particle motion
over a rigid substrate is that in Fig. 3(a), none of the steps in
Vy havedVy/df y

d=0 [1,10,16]. Although the slope ofVy is
reduced on the steps, it does not drop to zero, indicating that
along the locking directions the particle velocityVy contin-
ues to increase withf y

d. Figure 3(a) also indicates that, in the
locking regions,Vx is not constant but shows features where
the velocity bothincreasesand decreaseswhich coincide
with slope changes inVy. On the steps, whenVy locks to the
lower slope value,Vx locks to a constant positive slope
which can be seen most clearly nearf y

d/ f x
d=1.7 at the 60°

locking of s1,0d. At the lower edge of thes1,1d and s1,0d
steps,Vx decreasesin an abrupt dip before rising linearly on

FIG. 1. Particles(black dots) and trajectories(black lines) for a
system withqd/q=0.35 atf x

d=1.0 and(a) f y
d/ f x

d=0.0, (b) 0.57, and
(c) 0.78.

FIG. 2. The power spectra obtained from a time series ofVy for
(a) the commensurate casef y

d/ f x
d=0.57 shown in Fig. 1(b) and (b)

the incommensurate casef y
d/ f x

d=0.78 shown in Fig. 1(c).
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the step. On the upper end of these steps, when the slope in
Vy increases again,Vx shows another decrease.

In Fig. 3(b) we plot Vy along with its derivativeRy to
show the locking phases more clearly. At thes1,0d locking,
Ry drops to a lower value due to the smaller slope ofVy in
the locking regions. Peaks appear inRy at the beginning and
end of each locked phase, reflecting the increased slope ofVy
outside of the locked regions.Ry also shows some oscilla-
tions above thes1,0d locking, which we discuss in more
detail in Sec. IV C. Additionally, locking phases appear as
dips in Ry for the s1,1d locking centered atf y

d/ f x
d=0.57 as

well as ats1,2d and s1,3d.
Figure 3(a) also demonstrates that there is a cleartrans-

verse depinningthreshold for thes0,0d locking: Vy=0.0 for
f y

d/ f x
d,0.15. Here, despite the fact that the particle is mov-

ing in thex direction, there is an effective pinning threshold
for motion in they direction. Below this depinning threshold,
the particle trajectories are the same as those shown in Fig.
1(a), where the particle moves in an effective 1D trough.
Transverse depinning thresholds have been observed in vari-
ous systems of particles driven longitudinally over a 2D pe-
riodic substrate as an increasing transverse force is applied.
These systems include longitudinally moving vortices in pe-
riodic pinning arrays[10,11,13] and atoms moving over pe-
riodic surfaces[17]. In colloidal experiments on periodic
substrates, a locking is observed for small angles[3]. In all

these cases the particle motion remains locked in the longi-
tudinal direction until a large enough transverse force is ap-
plied. In Fig. 3(a) as f y

d/ f x
d approaches the transverse depin-

ning threshold,Vx, the particle velocity in thex-direction,
decreases. This decrease occurs because the increasing trans-
verse force shifts the driven particle closer to the lattice par-
ticles, increasing the interaction between the driven particle
and the other particles. Since the surrounding lattice is flex-
ible, some of the motion of the driven particle is transferred
into small distortions of the surrounding lattice. These dis-
tortions increase as the driven particle is forced closer to the
particles in the lattice. Once the driven particle begins to
move in they direction, its velocity in thex direction in-
creases since the driven particle no longer approaches the
particles in the surrounding lattice as closely and thus expe-
riences less damping of its motion. Remarkably, for
1.8, f y

d/ f x
d,2.0, Vx is greater than 1.0, indicating that the

particle is movingfaster than it should given the applied
driving force in thex direction. This indicates that some of
the energy from they component of the drive is being trans-
ferred to the x direction. Above the s1,0d step for
f y

d/ f x
d.2.0, Vx decreases slowly back to 1.0.

We next consider how the locking regions evolve with
increasing qd. In Fig. 4 we plot Vx vs f y

d/ f x
d for qd/q

=0.125, 0.25, 0.35, and 0.5 withf x
d=1.0. The plots are over-

laid with no offset. Forf y
d/ f x

d=0, Vx decreases for increasing
qd, indicating that the damping increases asqd rises. This
decrease inVx occurs because the driven particle interacts
more strongly with the surrounding particles, causing larger
distortions and transferring more of its energy into the lattice.
Additionally, all of the locking phases become wider with
increasingqd, indicating that as the distortions in the sur-
rounding lattice from the driven particle increase, the chan-
neling effect becomes stronger. The locking phases for the
higher-order values ofsm,nd can now be clearly resolved,
especially for theqd/q=0.5 curve where a particularly large
number of dips occur forf y

d/ f x
d,1.0. For the locking at

s1,0d, the value ofVx exceeds 1.0 forf y
d/ f x

d.1.7 at all val-
ues ofqd. Just above thes1,0d locking, Vx decays back to
1.0. During this decay, there are clear small scale periodic
peaks which are a real effect that we study later in this paper.

We note that for smallqd, the behavior of this system is
similar to that of a particle moving through a rigid lattice in

FIG. 3. (a) Vx (dark line) andVy (light line) for fixed f x
d=1.0 and

increasingf y
d for qd/q=0.35.(b) Vy (dashed line) and its derivative

Ry (solid line), showing the locking phases more clearly.

FIG. 4. Vx vs f y
d/ f x

d for qd/q=0.125,0.25,0.35, and 0.5(from
top left to bottom left).
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Ref. [10], where the same type of anomalous steps were
observed in bothVx andVy. The locations of the steps in Ref.
[10] occurred for different values off y

d/ f x
d since the under-

lying lattice was square rather than triangular. Additionally,
the slope ofVy along the steps was nearly zero in the rigid
lattice, makingVy appear much more steplike. The similar
behavior found here at smallqd occurs when the driven par-
ticle can no longer cause significant distortions in the sur-
rounding lattice, rendering it effectively rigid.

Dynamics of transverse depinning

We now examine the initial transverse depinning transi-
tion in more detail. We first consider the shape ofVy vs f y

d/ f x
d

near the transverse depinning. For elastic media depinning in
the presence of quenched disorder, theory predictsV~ sf d

− fcdb, wherefc is the depinning threshold[25]. For a single-
particle depinning from a sinusoidal substrate in 1D,b
=1/2. In 2D systems of collectively interacting particles
where plastic deformation occurs at depinning, studies find
scaling in the velocity force curves withb.1.5 [26]. It is
not known if there would be any scaling for the transverse
depinning of a longitudinally moving particle. In Fig. 5(a)
we showVy near the onset of motion in they direction for
the system in Fig. 3 withqd/q=0.35. We plotVy vs f y

d/ f x
d

− fc on a log-log scale in Fig. 5(b), where fc=0.15 is the
transverse depinning force. We find a reasonable power-law
fit with b=0.58 [solid line in Fig. 5(b)], close to the single-
particle value ofb=1/2. This indicates that the transverse
depinning is elastic in nature, and that when the particle de-
pins it does not induce tearing in the surrounding lattice.

For the steps aboves0,0d, whenever the particle leaves a
locked region,Vy shows curvature similar to that of the ini-
tial transverse depinning. This suggests that on the higher-
order steps, when the particle is channeling along an easy
flow direction, the particle is effectively pinned in the direc-
tion transverse tofd, rather than in the direction transverse to
f x

d. As f y
d increases, the transverse force eventually becomes

high enough for the particle to depin and begin moving at a
new angle.

In Fig. 6 we plot the particle trajectories at the transverse
depinning transition for the system shown in Fig. 5. In Fig.
6(a), just above the initial transverse depinning atf y

d/ fc
=1.05, the particle stays locked along thex direction for
about 16a before moving in the positivey direction to the
next row. The particle moves in a staircase fashion. In Fig.

6(b) for f y
d/ fc=1.22, we find a staircase motion similar to

that of Fig. 6(a), but with the particle translating in they
direction every 7a, producing a netVy that is higher than that
of Fig. 6(a). In Fig. 6(c) at f y

d/ fc=1.34 and Fig. 6(d) at
f y

d/ fc=1.5, the staircase motion persists with the particle
moving shorter distances in thex direction between jumps to
the next row in they direction.

IV. DRIVEN PARTICLES WITH INTERMEDIATE
CHARGE

Next we consider the case for 0.5,qd/q,3.0, which we
term the intermediate particle regime. Here we observe that
the locking phases become more pronounced and appear
more steplike inVy with dVy/df y

d=0 in some places. We also
find regimes whereVy decreases for increasingf y

d, indicating
a negativedifferential transverse resistance, ordVy/df y

d,0.
The scaling in the initial transverse depinning is also lost and
is replaced by a sharp jump, indicating that forqd/q.0.5 the
system is no longer in the elastic regime. In Fig. 7(a) we
showVx andVy for a system withqd/q=1.0. For these inter-
mediateqd values, the width of thes1,0d locking becomes so
large that it begins to overlap with the smaller locking
phases, and some of the smaller locking steps are lost. The
dips inVx are more pronounced and there are several regions
where bothVx andVy show jumps into and out of different
locked phases, rather than the smoother transitions seen for
lower values ofqd. The slopes ofVx andVy along thes1,0d
locking are both positive but show a nonlinear bowing effect.
In Fig. 7(b) we plotVx andVy for 0, f y

d/ f x
d,1, showing the

smaller locking phases more clearly. Along the steps1,1d,
centered atf y

d/ f x
d=0.6, the slope ofVy shows a bow feature,

indicating that the slope becomesnegativenearf y
d/ f x

d=0.73.
On the next step we find a similar bow feature. This behavior
is in contrast to the studies with rigid substrates, where the
slope ofVy never drops below zero along the steps. Figure 7

FIG. 5. (a) Vy vs f y
d/ f x

d at the transverse depinning transition for
the system shown in Fig. 3 withqd/q=0.35.(b) Log-log plot ofVy

vs sf y
d/ f x

d− fcd wherefc=0.15 is the transverse depinning threshold.
The solid line is a power-law fit with an exponent ofb=0.58.

FIG. 6. Particles(black dots) and trajectories(black lines) near
the transverse depinning transition for the system shown in Fig. 5 at
f y

d/ fc=sad 1.05, sbd 1.22, scd 1.34, and(d) 1.5.
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also shows that bothVx andVy can decrease simultaneously,
indicating an overall increase in the damping. For these in-
termediateqd values there is considerably more distortion in
the surrounding lattice. Just before the driven particle exits a
locked region, it has the strongest interaction with the sur-
rounding media and experiences the largest damping. At the
jumps in velocity accompanying each step, the driven par-
ticle can cause enough distortion to temporarily generate a
localized dislocation in the lattice.

A. Trajectories in the locked phases

In Fig. 8 we illustrate some of the particle trajectories for
different locking regimes from the system in Fig. 7. Figure
8(a) shows the step nearf y

d/ f x
d=0.39, which corresponds to

them=1, n=2 locking phase. The particle moves in a zigzag
pattern. The elastic distortions in the surrounding colloid lat-
tice are clearly visible in the form of very small loops on
both sides of the path of the driven particle. Here, the col-
loids closest to the driven particle move a distance less than
a as the driven particle approaches, and then return to their
initial positions after the driven particle passes. There are
some additional smaller distortions in the lattice at larger
distances from the driven colloid; however, these motions are
too small to be visible at the resolution in Fig. 8. In general,
when the intermediate charged particles move through a
channel during a locked phase, the motion is elastic and no
dislocations are generated. Only during the transitions out of
the locked phases do temporary distortions greater thana in
the surrounding lattice occur.

Figure 8(b) shows the trajectories atf y
d/ f x

d=0.6, when the
particle moves at 30° in thes1,1d locking regime. The width
of this s1,1d locked region is considerably larger than that of
the s1,2d phase in Fig. 8(a). Here, the particle follows a
sinusoidal path and causes distortions in the surrounding lat-
tice; however, these distortions are of a smaller magnitude
than those in Fig. 8(a), indicating that the particle channels
more easily on thes1,1d step. In Fig. 8(c) we plot the tra-
jectories for the step region atf y

d/ f x
d=0.8, where more sig-

nificant distortions in the surrounding lattice occur than for
Fig. 8(b). The width of this step is smaller than thes1,1d step
in Fig. 8(b). In Fig. 8(d) we show the trajectories atf y

d/ f x
d

=2.0 for the most prominent step,s1,0d, where the vortices
channel at 60°. There are almost no distortions in the sur-
rounding lattice. For a value off y

d/ f x
d just below the end of

the s1,0d phase,f y
d/ f x

d<2.6, significant distortions of the
colloids to the upper left of the driven particle occur in the
surrounding lattice, since the driven particle is pushed in this
direction by the increasingf y

d. When these distortions be-
come large enough, thes1,0d phase ends.

B. Locked phase evolution as a function ofqd

In Fig. 9 we plotVy vs f y
d/ f x

d for increasing values ofqd.
From bottom to top,qd/q=0.75,1,1.5,1.75, and 2.0. In this
range of qd, the initial transverse depinning threshold
changes little; however, the width of thes1,0d locking which
begins atf y

d/ f x
d<1.1 grows until it saturates atqd/q=1.75.

The width of the locking regions forf y
d/ f x

d,1.1 does not
increase much withqd; however, they became increasingly
smeared, which is particularly noticeable forqd/qù1.75.
The smearing occurs when the lattice distortions become
large enough to create dislocations in the surrounding lattice.
These dislocations appear when the particle jumps from one
symmetry angle to another, and thus they smear out the tran-
sition. The saturation of the width of the mains1,0d step also

FIG. 7. (a) Vx (dark line) and Vy (lighter line) vs f y
d/ f x

d for
qd/q=1.0. (b) Closeup of(a) for 0.0, f y

d/ f x
d,1.0.

FIG. 8. Particles(black dots) and trajectories(black lines)
for the system in Fig. 7 withf y

d/ f x
d=sad 0.39, sbd 0.6, scd 0.8,

and (d) 2.0.
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coincides with the onset of the creation of dislocations as the
particle passes into and out of the locked phase. In Fig. 10
we plot the correspondingVx vs f y

d/ f x
d for the system in Fig.

9. Again we find a smearing of the features with increasing
qd for f y

d/ f x
d,1.0. Additionally, we find an increase in the

magnitude of the fluctuations inVx just above the end of the
s1,0d locking phase forqd/q=2.0, due to the formation of
dislocations in the surrounding media.

In Fig. 11 we plot a phase diagram showing the evolution
of the widths of the transverse pinned phaseTp and thes1,0d
locked phaseL. The phases are identified from the features in
Vy shown in Fig. 9. Here the transverse pinned phaseTp
grows with qd until its width saturates aroundqd/q=0.75,
while the locked phaseL also grows withqd and saturates at
qd/q=1.75. There is a small decrease in the width of the
locked phase for higher values ofqd. Above qd/q=2.5, the
phases become increasingly difficult to distinguish due to the
large distortions in the lattice that cause large velocity fluc-
tuations near the transitions into and out of the locked
phases.

Thes1,0d phase grows with increasing particle interaction
strengthqd because the driven particle can more easily dis-

tort the surrounding lattice, allowing the lattice to accommo-
date thes1,0d phase for larger angles between the driving
force and 60°. The increasing size of the locked region can
also be viewed as arising from the fact that, asqd increases,
the driven particle experiences a stronger potential interac-
tion with the lattice. Eventually, for large enoughqd/q, the
distortion in the surrounding lattice becomes strong enough
to allow dislocations to be created, enabling the particle to
jump out of the locked channel and limiting the growth of
the locked phaseL in Fig. 11. As the particle interaction
increases aboveqd/q=2, this transition occurs at lower val-
ues of f y

d/ f x
d and the width of thes1,0d phase decreases as

seen in Fig. 11. A similar growth of the size of the locked
regions has been observed for systems with fixed lattices in
Refs.[10,16].

The behavior of the locked phase in Fig. 11 also indicates
how this system could be used for particle species separa-
tion. If two different species of particles are moving through
the sample with the same appliedf y

d/ f x
d, then it is possible

for one of the species to be in the lockedL phase while the
other species is not, and thus the two species will move in
different directions. For example, for a drive off y

d/ f x
d=1.25,

particles withqd/q.0.75 are in theL phase while particles
with qd/q,0.75 are not and will move at smaller angles.
One advantage of this technique over the optical traps is that
particles with the same optical properties but different
charges or sizes could be separated.

C. Dynamics just outside of them=1, n=0 phase

We now look more closely at some features in theVx and
Vy curves as well as the particle dynamics just at the end of
the m=1, n=0 phase. In Fig. 10, after the end of thes1,0d
phase, theVx curves decay back toVx=1.0. All the values
qd/q,2.5 show a similar decay in this regime. To examine
this decay, in Fig. 12(a) we plot Vx−V0 vs f y

d/ f x
d− fc, where

qd/q=0.75, V0=1.0, and fc=2.338 is the driving force at
which thes1,0d locked regime ends and theVx decay begins.
In Fig. 12(b) we plot the same curve in log-linear form and
show a good fit to an exponential formA exps−bxd, with b

FIG. 9. Vy vs f y
d/ f x

d for variedqd/q. A systematic shift is added
in the y direction for clarity. From top to bottom,qd/q
=2.0,1.75,1.5,1.0, and 0.75.

FIG. 10. Vx vs f y
d/ f x

d for the system in Fig. 9 with a systematic
shift added to they direction for clarity. From top to bottom,
qd/q=2.0,1.75,1.5,1.0, and 0.75.

FIG. 11. Phase diagram forqd/q vs f y
d/ f x

d. The transverse
pinned phase is markedTp, and the locked phase form=1, n=0 is
markedL.
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=2.0. For other values ofqd/q we observe the same behavior
with similar values forb. The fitting constants and curve
shape do not change when the drive is swept more slowly in
the simulations, indicating that we are not observing a tran-
sient behavior.

In the decay region shown in Fig. 12, there appear to be
some smaller oscillations inVx. Similar oscillations are also
seen inVy. Focusing on this region, we find that the oscilla-
tions are actually steps. In Fig. 13(a) we plotVy for the case
of qd/q=0.75 right after the end of thes1,0d locked phase.
Here Vy does not increase smoothly but passes through a
series of small jumps. Between these jumpsVy increases lin-
early. In Fig. 13(b) we plot the correspondingVx for the same
range of driving forces. HereVx also decreases in a series of
jumps which coincide with the jumps inVy. Between the
jumps,Vx increases linearly. For higher values off y

d/ f x
d be-

yond what is shown in Fig. 13, the jumps continue and be-
come more frequent until they overlap. In order to determine
the cause of the steps, in Fig. 14 we plot the particle trajec-

tories on the small step centered atf y
d/ f x

d=2.412 from Fig.
13. Here the particle moves at 60° for a distance of about
17a, then jumps over to the next row, moves at 60° again,
and then repeats the cycle of alternately jumping and mov-
ing. In Fig. 14(b), on the step just afterf y

d/ f x
d=2.51 a similar

motion is seen as in Fig. 14(a); however, the particle moves
a distance of about 9a before jumping to the adjacent row.
This staircase-type motion is similar to the dynamics just
above the transverse depinning transition as shown in Fig. 6.
In both these cases the particle moves predominantly along
the symmetry angle which is 0° for the transverse depinning
and 60° here, with periodic jumps into the next row. For the
higher-order steps, the particle moves a shorter distance in
the 60° direction before jumping to the next row.

V. STRONGLY INTERACTING PARTICLES

We next consider the case of driven particles with
qd/q.2.5. In this regime we find that a significant number
of dislocations are introduced into the system. In Fig. 15 we
showVy andVx for qd/q=5.0. Here the curves are noisy with
several sharp steps. No clearly defined locking regime is
present; however, there are remnants of thes1,0d locking
regime.

The smaller phase locking regions for drive angles less
than 60° that were present at smallerqd are completely
washed out in Fig. 15. On these smallest steps, as illustrated
in Fig. 8, the driven particle created the largest distortions in
the surrounding lattice. Asqd is increased, dislocations ap-
pear first for the steps which produce the largest lattice dis-
tortions, and hence the smallest phase locking regions are
smeared out first. This explains the disappearance of these
phases at largeqd. Figure 15 shows that there is still an
appreciable locking effect for them=1, n=0 phase. The in-
termittent jumps in the velocities are due to the formation of
dislocations, a process which abruptly changes the velocity
of the driven particle. Additionally, a small number of dislo-
cations remain in the colloid lattice forf y

d/ f x
d below them

=1, n=0 phase. In Fig. 16 we show the trajectories for the
system in Fig. 15 forf y

d/ f x
d=1.0. Here the trajectories are

strongly disordered and in general do not overlap. For this
value of drive a number of dislocations are created in the
lattice. Some of the dislocations disappear when the lattice
reorders once the driven particle moves past; however, some
persist for long times. Since we are using periodic boundary

FIG. 12. (a) Vx−V0 vs f y
d/ f x

d− fc, whereV0=1.0 andfc=2.338 is
the value of the driving force when thes1,0d locking phase ends for
a system withqd/q=0.75. (b) Log-linear plot of (a). The solid
straight line is a fit with the formA exps−bxd whereb=2.0 andA
=0.1.

FIG. 13. (a) Vy vs f y
d/ f x

d for the system in Fig. 12, just after the
s1,0d locking ends.(b) CorrespondingVx.

FIG. 14. Particles(black dots) and trajectories(black lines) for
the system in Fig. 13 at(a) the step atf y

d/ f x
d=2.412 and(b) the step

at f y
d/ f x

d=2.51.
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conditions, the particle passes through the same region re-
peatedly and interacts with the persistent dislocations, which
could make the flow more disordered. To address this we
have performed the same simulations for larger systems and
examined the trajectories before the particle comes back on
its previous path. We find the same disordered flow, indicat-
ing that it is the process of dislocation creation which causes
the particle trajectories to become disordered and not the
existence of dislocations from a previous passage. We have
also measured the power spectra in this case and find white
noise rather than a narrow band signal.

VI. TEMPERATURE EFFECTS

In a real colloidal system, temperature effects will be rel-
evant. For a triangular colloidal system at a finite density,
there is a well-defined melting temperatureTm above which
dislocations proliferate. We investigate the effects of the tem-
perature on the locking up toTm. We concentrate on the
system withqd/q=0.5 where locking is still clearly visible
but the driven particle does not generate dislocations in the
surrounding media atT=0. In Fig. 17(a) we showVx for
T/Tm=0.0, 0.44, 0.7, 0.9, and 1.01. For the lowest tempera-
ture, the width of thes1,0d step is the largest. It decreases for
higher T and disappears aboveTm. Additionally, the initial
dip in Vx for the transversely pinned phases is also reduced
as the temperature increases. The higher-order locked re-
gions for f y

d/ f x
d,1.4 become washed out forT/Tmù0.7.

In Fig. 17(b) we plot the widthW of the s1,0d locking
step from Fig. 17(a). Here the width deceases with increasing
T and drops suddenly atTm. This indicates that, even for
relatively small particles, the locking effects should be ob-
servable in an experimental system all the way up to the
melting transition of the colloidal lattice itself.

VII. SUMMARY

In summary, we have investigated the dynamics of driven
particles moving through a triangular colloidal lattice for var-

FIG. 15. (a) Vy vs f y
d/ f x

d for qd/q=5. (b) CorrespondingVx vs
f y

d/ f x
d.

FIG. 16. Particles(black dots) and trajectories(black lines) for
the system in Fig. 15 atf y

d/ f x
d=1.0.

FIG. 17. (a) Vx vs f y
d/ f x

d for varied T/Tm=0.0, 0.44, 0.7, 0.9,
and 1.01.Tm is the temperature at which the nondriven lattice melts.
The curve with the largests1,0d locking phase(centered atf y

d/ f x
d

=1.7) is T=0.0. The width of thes1,0d locking phase decreases for
increasingT. (b) Width W of the s1,0d locking vs T/Tm for the
system in Fig. 17(a).
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ied orientations of the drive with respect to the symmetry of
the colloidal lattice. This system, where the driven particle
causes distortions in the surrounding colloidal lattice, differs
from previously studied systems in which particles are
driven through a lattice offixedobstacles or traps. We find a
series of locked phases as a function of drive angle where the
particles prefer to move along certain symmetry directions.
For driven particles that interact only weakly with the sur-
rounding lattice, we find a devil’s staircase structure. For
larger driven particles, the locking effects become much
more pronounced and the transitions into and out of the
locked states become much sharper. These transitions can be
accompanied by the creation of short-lived dislocations in
the surrounding lattice. We also find some important features
such as negative differential resistance in both the transverse
and longitudinal velocities in the intermediate particle re-
gime. As the charge of the driven particles increases, the

smallest locking regimes are lost when the main locking re-
gimes grow and significant distortion of the surrounding lat-
tice occurs. For larger particles, the locking effects are
washed out when significant numbers of dislocations are cre-
ated. Since the width of the locking steps depends strongly
on the charge of the driven particle, our results may be useful
as a method for particle separation techniques or electro-
phoresis. We have also studied the dynamics at the transi-
tions into and out of the main locking states and find a stair-
caselike motion of the driven particle.
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